plant micronutrient use efficiency

Download or Read online Plant Micronutrient Use Efficiency full HQ books. Available in PDF, ePub and Kindle. We cannot guarantee that Plant Micronutrient Use Efficiency book is available. Click Get Book button to download or read books, you can choose FREE Trial service. Join over 650.000 happy Readers and READ as many books as you like (Personal use).

Plant Macronutrient Use Efficiency
Author :
Publisher : Academic Press
Release Date :
ISBN 10 : 0128112948
Pages : 418 pages
Rating : /5 ( users)
GET BOOK!

Plant Macronutrient Use Efficiency presents an up-to-date overview of the latest research on the molecular and genetic basis of macro-nutrient use efficiency (NUE) in plants, and strategies that can be used to improve NUE and nutrient-associated stress tolerance in crop plants. Plant NUE is a measure of how efficiently plants use available nutrients and an understanding of plant NUE has the potential to help improve the use of limited natural resources and to help achieve global food security. This book presents information important for the development of crop plants with improved macro-NUE, a prerequisite to reducing production costs, expanding crop production into noncompetitive marginal lands with low nutrient resources, and for helping to prevent environmental contamination. Plant Macronutrient Use Efficiency provides a comprehensive overview of the complex mechanisms regulating macro-NUE in crop plants, which is required if plant breeders are to develop modern crop varieties that are more resilient to nutrient-associated stress. Identification of genes responsible for macro-NUE and nutrient-related stress tolerance in crop plants will help us to understand the molecular mechanisms associated with the responses of crop plants to nutrient stress. This volume contains both fundamental and advanced information, and critical commentaries useful for those in all fields of plant science research. Provides details of molecular and genetic aspects of NUE in crop plants and model plant systems Presents information on major macronutrients, nutrient sensing and signaling, and the molecular and genomic issues associated with primary and secondary macronutrients Delivers information on how molecular genetic information associated with NUE can be used to develop plant breeding programs Includes contributions from world-leading plant nutrition research groups

Plant Macronutrient Use Efficiency

Plant Macronutrient Use Efficiency presents an up-to-date overview of the latest research on the molecular and genetic basis of macro-nutrient use efficiency (NUE) in plants, and strategies that can be used to improve NUE and nutrient-associated stress tolerance in crop plants. Plant NUE is a measure of how efficiently plants

GET BOOK!
Plant Micronutrient Use Efficiency

Plant Micronutrient Use Efficiency: Molecular and Genomic Perspectives in Crop Plants presents information on the complex mechanisms regulating micronutrient use efficiency in plants. Understanding this science is essential for the development of new varieties of crop plants that are more resilient to micronutrient stress, as well as plants with increased

GET BOOK!
Nutrient Use Efficiency in Plants

Nutrient Use Efficiency in Plants: Concepts and Approaches is the ninth volume in the Plant Ecophysiology series. It presents a broad overview of topics related to improvement of nutrient use efficiency of crops. Nutrient use efficiency (NUE) is a measure of how well plants use the available mineral nutrients. It

GET BOOK!
Plant Micronutrients

Plants require essential nutrients (macronutrients and micronutrients) for normal functioning. Sufficiency range is the levels of nutrients necessary to meet the plant’s needs for optimal growth. This range depends on individual plant species and the particular nutrient. Nutrient levels outside of a plant’s sufficiency range cause overall crop

GET BOOK!
The Molecular and Physiological Basis of Nutrient Use Efficiency in Crops

Efforts to increase efficient nutrient use by crops are of growing importance as the global demand for food, fibre and fuel increases and competition for resources intensifies. The Molecular and Physiological Basis of Nutrient Use Efficiency in Crops provides both a timely summary of the latest advances in the field

GET BOOK!
Abiotic and Biotic Stress in Plants

The impact of global climate change on crop production has emerged as a major research priority during the past decade. Understanding abiotic stress factors such as temperature and drought tolerance and biotic stress tolerance traits such as insect pest and pathogen resistance in combination with high yield in plants is

GET BOOK!
From soil to seed  micronutrient movement into and within the plant

In all living organisms, essential micronutrients are cofactors of many ubiquitous proteins that participate in crucial metabolic pathways, but can also be toxic when present in excessive concentrations. In order to achieve correct homeostasis, plants need to control uptake of metals from the environment, their distribution to organs and tissues,

GET BOOK!
The Molecular and Physiological Basis of Nutrient Use Efficiency in Crops

Efforts to increase efficient nutrient use by crops are of growing importance as the global demand for food, fibre and fuel increases and competition for resources intensifies. The Molecular and Physiological Basis of Nutrient Use Efficiency in Crops provides both a timely summary of the latest advances in the field

GET BOOK!
Micronutrient Deficiencies in Global Crop Production

A deficiency of one or more of the eight plant micronutrients (boron, chlorine, copper, iron, manganese, molybdenum, nickel and zinc) will adversely affect both the yield and quality of crops. Micronutrient deficiencies in crops occur in many parts of the world, at various scales (from one to millions of hectares),

GET BOOK!
Soybean

Plants are important for a permanent ecosystem, because in the ecological pyramid plants support all the other living organisms at the base. Very important organization is thought to be the integral process of resource, transport, partitioning, metabolism, and production, which involves yield, biomass, and productivity in plants. Accordingly, it is

GET BOOK!
Heavy Metal Toxicity in Plants

Heavy Metal Toxicity in Plants: Physiological and Molecular Perspectives highlights the various metal induced impacts on plants and adaptation strategies employed to avoid these stressful conditions. The volume comprise the chapters from the different areas ranging from latest biotechnological to omics approaches. This comprehensive volume emphasizes on the recent updates

GET BOOK!
Nanoscience for Sustainable Agriculture

This book discusses the ability of nanomaterials to protect crop-plant and animal health, increase production, and enhance the quality of food and other agricultural products. It explores the use of targeted delivery and slow- release agrochemicals to reduce the damage to non-target organisms and the quantity released into the soil

GET BOOK!
Biomass Now

This two-volume book on biomass is a reflection of the increase in biomass related research and applications, driven by overall higher interest in sustainable energy and food sources, by increased awareness of potentials and pitfalls of using biomass for energy, by the concerns for food supply and by multitude of

GET BOOK!
Microbes in Land Use Change Management

Microbes in Land Use Change Management details the various roles of microbial resources in management of land uses and how the microbes can be used for the source of income due to their cultivation for the purpose of biomass and bioenergy production. Using various techniques, the disturbed and marginal lands

GET BOOK!
Frontiers in Plant   Soil Interaction

Plants face a wide range of environmental challenges, which are expected to become more intense as a result of global climate change. Plant–soil interactions play an important role in the functioning of ecosystems. Soil properties represent a strong selection pressure for plant diversity and influence the structure of plant

GET BOOK!