metallurgy and design of alloys with hierarchical microstructures

Download or Read online Metallurgy And Design Of Alloys With Hierarchical Microstructures full HQ books. Available in PDF, ePub and Kindle. We cannot guarantee that Metallurgy And Design Of Alloys With Hierarchical Microstructures book is available. Click Get Book button to download or read books, you can choose FREE Trial service. Join over 650.000 happy Readers and READ as many books as you like (Personal use).

Metallurgy and Design of Alloys with Hierarchical Microstructures
Author :
Publisher : Elsevier
Release Date :
ISBN 10 : 0128120258
Pages : 506 pages
Rating : /5 ( users)
GET BOOK!

Metallurgy and Design of Alloys with Hierarchical Microstructures covers the fundamentals of processing-microstructure-property relationships and how multiple properties are balanced and optimized in materials with hierarchical microstructures widely used in critical applications. The discussion is based principally on metallic materials used in aircraft structures; however, because they have sufficiently diverse microstructures, the underlying principles can easily be extended to other materials systems. With the increasing microstructural complexity of structural materials, it is important for students, academic researchers and practicing engineers to possess the knowledge of how materials are optimized and how they will behave in service. The book integrates aspects of computational materials science, physical metallurgy, alloy design, process design, and structure-properties relationships, in a manner not done before. It fills a knowledge gap in the interrelationships of multiple microstructural and deformation mechanisms by applying the concepts and tools of designing microstructures for achieving combinations of engineering properties—such as strength, corrosion resistance, durability and damage tolerance in multi-component materials—used for critical structural applications. Discusses the science behind the properties and performance of advanced metallic materials Provides for the efficient design of materials and processes to satisfy targeted performance in materials and structures Enables the selection and development of new alloys for specific applications based upon evaluation of their microstructure as illustrated in this work

Metallurgy and Design of Alloys with Hierarchical Microstructures

Metallurgy and Design of Alloys with Hierarchical Microstructures covers the fundamentals of processing-microstructure-property relationships and how multiple properties are balanced and optimized in materials with hierarchical microstructures widely used in critical applications. The discussion is based principally on metallic materials used in aircraft structures; however, because they have sufficiently diverse

GET BOOK!
Metallurgy and Design of Alloys with Hierarchical Microstructures

Metallurgy and Design of Alloys with Hierarchical Microstructures covers the fundamentals of processing-microstructure-property relationships and how multiple properties are balanced and optimized in materials with hierarchical microstructures widely used in critical applications. The discussion is based principally on metallic materials used in aircraft structures; however, because they have sufficiently diverse

GET BOOK!
Magnesium Technology 2020

The Magnesium Technology Symposium, the event on which this collection is based, is one of the largest yearly gatherings of magnesium specialists in the world. Papers represent all aspects of the field, ranging from primary production to applications to recycling. Moreover, papers explore everything from basic research findings to industrialization.

GET BOOK!
Scientific Modeling and Simulations

Although computational modeling and simulation of material deformation was initiated with the study of structurally simple materials and inert environments, there is an increasing demand for predictive simulation of more realistic material structure and physical conditions. In particular, it is recognized that applied mechanical force can plausibly alter chemical reactions

GET BOOK!
Physical Metallurgy

Physical metallurgy is one of the main fields of metallurgical science dealing with the development of the microstructure of metals in order to achieve desirable properties required in technological applications. Physical Metallurgy: Principles and Design focuses on the processing–structure–properties triangle as it applies to metals and alloys. It

GET BOOK!
Metallography and Microstructure in Ancient and Historic Metals

David A. Scott provides a detailed introduction to the structure and morphology of ancient and historic metallic materials. Much of the scientific research on this important topic has been inaccessible, scattered throughout the international literature, or unpublished; this volume, although not exhaustive in its coverage, fills an important need by

GET BOOK!
Proceedings of the TMS Middle East   Mediterranean Materials Congress on Energy and Infrastructure Systems  MEMA 2015

This is a collection of papers presented at The TMS Middle East - Mediterranean Materials Congress on Energy and Infrastructure Systems (MEMA 2015), a conference organized by The Minerals, Metals & Materials Society (TMS) and held in Doha, Qatar. The event focused on new materials research and development in applications of interest

GET BOOK!
Physical Metallurgy of High Manganese Steels

The Special Issue ‘Physical Metallurgy of High Manganese Steels’ addresses the highly fascinating class of manganese-alloyed steels with manganese contents well above 3 mass%. The book gathers manuscripts from internationally recognized researchers with stimulating new ideas and original results. It consists of fifteen original research papers. Seven contributions focus on steels

GET BOOK!
Corrosion of Aluminium

Corrosion of Aluminium highlights the practical and general aspects of the corrosion of aluminium alloys with many illustrations and references. In addition to that, the first chapter allows the reader who is not very familiar with aluminium to understand the metallurgical, chemical and physical features of the aluminium alloys. The

GET BOOK!
Intermediate Solid Mechanics

A concise yet comprehensive treatment of the fundamentals of solid mechanics, including solved examples, exercises, and homework problems.

GET BOOK!
Stainless Steels and Alloys

Materials science is the magic that allows us to change the chemical composition and microstructure of material to regulate its corrosion-mechanical, technological, and functional properties. Five major classes of stainless steels are widely used: ferritic, austenitic, martensitic, duplex, and precipitation hardening. Austenitic stainless steels are extensively used for service down

GET BOOK!
Material and Process Design for Lightweight Structures

The use of lightweight structures across several industries has become inevitable in today’s world given the ever-rising demand for improved fuel economy and resource efficiency. In the automotive industry, composites, reinforced plastics, and lightweight materials, such as aluminum and magnesium are being adopted by many OEMs at increasing rates

GET BOOK!
Computational Materials Science

Modeling and simulation play an ever increasing role in the development and optimization of materials. Computational Materials Science presents the most important approaches in this new interdisciplinary field of materials science and engineering. The reader will learn to assess which numerical method is appropriate for performing simulations at the various

GET BOOK!
Lamination

The field of lamination has developed significantly over the past 5000 years. Nowadays, we have a humongous array of structures and technological systems where composite laminates are applied. From the viewpoint of structural mechanics, an interface slip motion between two laminated structures, such as beam plate and plate in the presence

GET BOOK!
Metallurgical Design and Industry

​This edited volume examines metallurgical technologies and their place in society throughout the centuries. The authors discuss metal alloys and the use of raw mineral resources as well as fabrication of engineered alloys for a variety of applications. The applications covered in depth include financial, mining and smelting, bridges, armor,

GET BOOK!