matrix and tensor decomposition

Download or Read online Matrix And Tensor Decomposition full HQ books. Available in PDF, ePub and Kindle. We cannot guarantee that Matrix And Tensor Decomposition book is available. Click Get Book button to download or read books, you can choose FREE Trial service. Join over 650.000 happy Readers and READ as many books as you like (Personal use).

Matrix and Tensor Factorization Techniques for Recommender Systems
Author :
Publisher : Springer
Release Date :
ISBN 10 : 9783319413563
Pages : 102 pages
Rating : /5 ( users)
GET BOOK!

This book presents the algorithms used to provide recommendations by exploiting matrix factorization and tensor decomposition techniques. It highlights well-known decomposition methods for recommender systems, such as Singular Value Decomposition (SVD), UV-decomposition, Non-negative Matrix Factorization (NMF), etc. and describes in detail the pros and cons of each method for matrices and tensors. This book provides a detailed theoretical mathematical background of matrix/tensor factorization techniques and a step-by-step analysis of each method on the basis of an integrated toy example that runs throughout all its chapters and helps the reader to understand the key differences among methods. It also contains two chapters, where different matrix and tensor methods are compared experimentally on real data sets, such as Epinions, GeoSocialRec, Last.fm, BibSonomy, etc. and provides further insights into the advantages and disadvantages of each method. The book offers a rich blend of theory and practice, making it suitable for students, researchers and practitioners interested in both recommenders and factorization methods. Lecturers can also use it for classes on data mining, recommender systems and dimensionality reduction methods.

Matrix and Tensor Factorization Techniques for Recommender Systems

This book presents the algorithms used to provide recommendations by exploiting matrix factorization and tensor decomposition techniques. It highlights well-known decomposition methods for recommender systems, such as Singular Value Decomposition (SVD), UV-decomposition, Non-negative Matrix Factorization (NMF), etc. and describes in detail the pros and cons of each method for matrices

GET BOOK!
Matrix and Tensor Decompositions in Signal Processing

The second volume will deal with a presentation of the main matrix and tensor decompositions and their properties of uniqueness, as well as very useful tensor networks for the analysis of massive data. Parametric estimation algorithms will be presented for the identification of the main tensor decompositions. After a brief

GET BOOK!
Matrix and Tensor Factorization Techniques for Recommender Systems

This book presents the algorithms used to provide recommendations by exploiting matrix factorization and tensor decomposition techniques. It highlights well-known decomposition methods for recommender systems, such as Singular Value Decomposition (SVD), UV-decomposition, Non-negative Matrix Factorization (NMF), etc. and describes in detail the pros and cons of each method for matrices

GET BOOK!
Matrix and Tensor Decompositions in Signal Processing

The second volume will deal with a presentation of the main matrix and tensor decompositions and their properties of uniqueness, as well as very useful tensor networks for the analysis of massive data. Parametric estimation algorithms will be presented for the identification of the main tensor decompositions. After a brief

GET BOOK!
Nonnegative Matrix and Tensor Factorizations

This book provides a broad survey of models and efficient algorithms for Nonnegative Matrix Factorization (NMF). This includes NMF’s various extensions and modifications, especially Nonnegative Tensor Factorizations (NTF) and Nonnegative Tucker Decompositions (NTD). NMF/NTF and their extensions are increasingly used as tools in signal and image processing, and

GET BOOK!
Algorithmic Aspects of Machine Learning

This book bridges theoretical computer science and machine learning by exploring what the two sides can teach each other. It emphasizes the need for flexible, tractable models that better capture not what makes machine learning hard, but what makes it easy. Theoretical computer scientists will be introduced to important models

GET BOOK!
Matrix and Tensor Factorization Techniques for Recommender Systems

This book presents the algorithms used to provide recommendations by exploiting matrix factorization and tensor decomposition techniques. It highlights well-known decomposition methods for recommender systems, such as Singular Value Decomposition (SVD), UV-decomposition, Non-negative Matrix Factorization (NMF), etc. and describes in detail the pros and cons of each method for matrices

GET BOOK!
Tensor Methods in Statistics

This book provides a systematic development of tensor methods in statistics, beginning with the study of multivariate moments and cumulants. The effect on moment arrays and on cumulant arrays of making linear or affine transformations of the variables is studied. Because of their importance in statistical theory, invariant functions of

GET BOOK!
Spectral Learning on Matrices and Tensors

The authors of this monograph survey recent progress in using spectral methods including matrix and tensor decomposition techniques to learn many popular latent variable models. With careful implementation, tensor-based methods can run efficiently in practice, and in many cases they are the only algorithms with provable guarantees on running time

GET BOOK!
Matrix and Tensor Decomposition

Download or read online Matrix and Tensor Decomposition written by Christian Jutten, published by Unknown which was released on 2022-01-27. Get Matrix and Tensor Decomposition Books now! Available in PDF, ePub and Kindle.

GET BOOK!
Scalable Low rank Matrix and Tensor Decomposition on Graphs

Mots-clés de l'auteur: Principal Component Analysis ; graphs ; low-rank and sparse decomposition ; clustering ; low-rank tensors.

GET BOOK!
Large Scale Eigenvalue Problems

Results of research into large scale eigenvalue problems are presented in this volume. The papers fall into four principal categories: novel algorithms for solving large eigenvalue problems, novel computer architectures, computationally-relevant theoretical analyses, and problems where large scale eigenelement computations have provided new insight.

GET BOOK!
Anisotropy Across Fields and Scales

This open access book focuses on processing, modeling, and visualization of anisotropy information...--

GET BOOK!
Tensors in Image Processing and Computer Vision

Tensor signal processing is an emerging field with important applications to computer vision and image processing. This book presents the state of the art in this new branch of signal processing, offering a great deal of research and discussions by leading experts in the area. The wide-ranging volume offers an

GET BOOK!
Euro Par 2017  Parallel Processing

This book constitutes the proceedings of the 23rd International Conference on Parallel and Distributed Computing, Euro-Par 2017, held in Santiago de Compostela, Spain, in August/September 2017. The 50 revised full papers presented together with 2 abstract of invited talks and 1 invited paper were carefully reviewed and selected from 176 submissions. The papers are organized

GET BOOK!