mathematical modelling of swimming soft microrobots

Download or Read online Mathematical Modelling Of Swimming Soft Microrobots full HQ books. Available in PDF, ePub and Kindle. We cannot guarantee that Mathematical Modelling Of Swimming Soft Microrobots book is available. Click Get Book button to download or read books, you can choose FREE Trial service. Join over 650.000 happy Readers and READ as many books as you like (Personal use).

Mathematical Modeling of Swimming Soft Microrobots
Author :
Publisher : Academic Press
Release Date :
ISBN 10 : 0128169443
Pages : 240 pages
Rating : /5 ( users)
GET BOOK!

Mathematical Modelling of Swimming Soft Microrobots presents a theoretical framework for modelling of soft microrobotic systems based on resistive-force theory. Microorganisms are highly efficient at swimming regardless of the rheological and physical properties of the background fluids. This efficiency has inspired researchers and Engineers to develop microrobots that resemble the morphology and swimming strategies of microorganisms. The ultimate goal of this book is threefold: first, to relate resistive-force theory to externally and internally actuated microrobotic systems; second, to enable the readers to develop numerical models of a wide range of microrobotic systems; third, to enable the reader to optimize the design of the microrobot to enhance its swimming efficiency. Enable the readers to develop numerical models of a wide range of microrobotic systems Enable the reader to optimize the design of the microrobot to enhance its swimming efficiency The focus on the development of numerical models that enables Engineers to predict the behavior of the microrobots and optimize their designs to increase their swimming efficiency Provides videos to demonstrate experimental results and animations from the simulation results

Mathematical Modeling of Swimming Soft Microrobots

Mathematical Modelling of Swimming Soft Microrobots presents a theoretical framework for modelling of soft microrobotic systems based on resistive-force theory. Microorganisms are highly efficient at swimming regardless of the rheological and physical properties of the background fluids. This efficiency has inspired researchers and Engineers to develop microrobots that resemble the

GET BOOK!
Nanotechnology for Hematology  Blood Transfusion  and Artificial Blood

Nanotechnology for Hematology, Blood Transfusion, and Artificial Blood outlines the fundamental design concepts and emerging applications of nanotechnology in hematology, blood transfusion and artificial blood. This book is an important reference source for materials scientists, engineers and biomedical scientists who are looking to increase their understanding of how nanotechnology can

GET BOOK!
Soft Interfaces

Many of the distinctive and useful phenomena of soft matter come from its interaction with interfaces. Examples are the peeling of a strip of adhesive tape, the coating of a surface, the curling of a fiber via capillary forces, or the collapse of a porous sponge. These interfacial phenomena are

GET BOOK!
Microbiorobotics

Microbiorobotics is a new engineering discipline that inherently involves a multidisciplinary approach (mechanical engineering, cellular biology, mathematical modeling, control systems, synthetic biology, etc). Building robotics system in the micro scale is an engineering task that has resulted in many important applications, ranging from micromanufacturing techniques to cellular manipulation. However, it

GET BOOK!
Mathematics Applied to Continuum Mechanics

This classic work gives an excellent overview of the subject, with an emphasis on clarity, explanation, and motivation. Extensive exercises and a valuable section containing hints and answers make this an excellent text for both classroom use and independent study.

GET BOOK!
Mobile Microrobotics

The first textbook on micron-scale mobile robotics, introducing the fundamentals of design, analysis, fabrication, and control, and drawing on case studies of existing approaches. Progress in micro- and nano-scale science and technology has created a demand for new microsystems for high-impact applications in healthcare, biotechnology, manufacturing, and mobile sensor networks.

GET BOOK!
Microbiorobotics

Microbiorobotics: Biologically Inspired Microscale Robotic Systems, Second Edition presents information on a new engineering discipline that takes a multidisciplinary approach to accomplish precise manipulation of microscale spaces. Microorganisms have evolved various mechanisms to thrive in microscale environments and are therefore a useful tool for use in many applications, ranging from

GET BOOK!
Mechanically Responsive Materials for Soft Robotics

Offers a comprehensive review of the research and development of mechanically responsive materials and their applications in soft robots Mechanically Responsive Materials for Soft Robotics offers an authoritative guide to the current state of mechanically responsive materials for the development of soft robotics. With contributions from an international panel of

GET BOOK!
Flowing Matter

This open access book, published in the Soft and Biological Matter series, presents an introduction to selected research topics in the broad field of flowing matter, including the dynamics of fluids with a complex internal structure -from nematic fluids to soft glasses- as well as active matter and turbulent phenomena.

GET BOOK!
Comparative Biomechanics

The classic textbook on comparative biomechanics—revised and expanded Why do you switch from walking to running at a specific speed? Why do tall trees rarely blow over in high winds? And why does a spore ejected into air at seventy miles per hour travel only a fraction of an

GET BOOK!
Control Systems Design of Bio Robotics and Bio Mechatronics with Advanced Applications

Control Systems Design of Bio-Robotics and Bio-Mechatronics with Advanced Applications delivers essential and advanced bioengineering information on the application of control and robotics technologies in the life sciences. Judging by what we have witnessed so far, this exciting field of control systems and robotics in bioengineering is likely to produce

GET BOOK!
Electromagnetic Actuation and Sensing in Medical Robotics

This book highlights electromagnetic actuation (EMA) and sensing systems for a broad range of applications including targeted drug delivery, drug-release-rate control, catheterization, intravitreal needleless injections, wireless magnetic capsule endoscopy, and micromanipulations. It also reviews the state-of-the-art magnetic actuation and sensing technologies with remotely controlled targets used in biomedicine.

GET BOOK!
Mechanics of Swimming and Flying

Provides a summary of the fluid dynamics of the locomotion of living organisms. Describes biological phenomena in detail from the swimming of bacteria and fish to the flying of insects and birds.

GET BOOK!
Biological Flows

Biomechanics has a distinguished history extending at least to the 16th Century. However the later half oftbis century has seen an explosion ofthe field with it being viewed as affering exciting challenges for physical scientists and engineers interested in the life sciences, and wonderful opportunities for life scientists eager to

GET BOOK!
Artificial Cilia

Cilia are tiny hairs covering biological cells to generate and sense fluid flow. Millions of years of evolution have inspired a novel technology which is barely a decade old. Artificial cilia have been developed to control and sense fluid flow in microscopic systems, presenting new and interesting options for flow

GET BOOK!