magnetism and spintronics in carbon and carbon nanostructured materials

Download or Read online Magnetism And Spintronics In Carbon And Carbon Nanostructured Materials full HQ books. Available in PDF, ePub and Kindle. We cannot guarantee that Magnetism And Spintronics In Carbon And Carbon Nanostructured Materials book is available. Click Get Book button to download or read books, you can choose FREE Trial service. Join over 650.000 happy Readers and READ as many books as you like (Personal use).

Magnetism and Spintronics in Carbon and Carbon Nanostructured Materials
Author :
Publisher : Elsevier
Release Date :
ISBN 10 : 0128176814
Pages : 240 pages
Rating : /5 ( users)
GET BOOK!

Magnetism and Spintronics in Carbon and Carbon Nanostructured Materials offers coverage of electronic structure, magnetic properties and their spin injection, and the transport properties of DLC, graphene, graphene oxide, carbon nanotubes, fullerenes, and their different composite materials. This book is a valuable resource for those doing research or working with carbon and carbon-related nanostructured materials for electronic and magnetic devices. Carbon-based nanomaterials are promising for spintronic applications because their weak spin-orbit (SO) coupling and hyperfine interaction in carbon atoms entail exceptionally long spin diffusion lengths (~100μm) in carbon nanotubes and graphene. The exceptional electronic and transport features of carbon nanomaterials could be exploited to build multifunctional spintronic devices. However, a large spin diffusion length comes at the price of small SO coupling, which limits the possibility of manipulating electrons via an external applied field. Assesses the relative utility of a variety of carbon-based nanomaterials for spintronics applications Analyzes the specific properties that make carbon and carbon nanostructured materials optimal for spintronics and magnetic applications Discusses the major challenges to using carbon nanostructured materials as magnetic agents on a mass scale

Magnetism and Spintronics in Carbon and Carbon Nanostructured Materials

Magnetism and Spintronics in Carbon and Carbon Nanostructured Materials offers coverage of electronic structure, magnetic properties and their spin injection, and the transport properties of DLC, graphene, graphene oxide, carbon nanotubes, fullerenes, and their different composite materials. This book is a valuable resource for those doing research or working with

GET BOOK!
Spintronics Handbook  Second Edition  Spin Transport and Magnetism

Spintronics Handbook, Second Edition offers an update on the single most comprehensive survey of the two intertwined fields of spintronics and magnetism, covering the diverse array of materials and structures, including silicon, organic semiconductors, carbon nanotubes, graphene, and engineered nanostructures. It focuses on seminal pioneering work, together with the latest

GET BOOK!
Magnetism in Carbon Nanostructures

Magnetism in carbon nanostructures is a rapidly expanding field of current materials science. Its progress is driven by the wide range of applications for magnetic carbon nanosystems, including transmission elements in spintronics, building blocks of cutting-edge nanobiotechnology, and qubits in quantum computing. These systems also provide novel paradigms for basic

GET BOOK!
Magnetism in Carbon Nanostructures

Magnetism in carbon nanostructures is a rapidly expanding field of current materials science. Its progress is driven by the wide range of applications for magnetic carbon nanosystems, including transmission elements in spintronics, building blocks of cutting-edge nanobiotechnology, and qubits in quantum computing. These systems also provide novel paradigms for basic

GET BOOK!
Spintronic 2D Materials

Spintronic 2D Materials: Fundamentals and Applications provides an overview of the fundamental theory of 2D electronic systems that includes a selection of the most intensively investigated 2D materials. The book tells the story of 2D spintronics in a systematic and comprehensive way, providing the growing community of spintronics researchers with

GET BOOK!
Spintronics Handbook  Second Edition  Spin Transport and Magnetism

Spintronics Handbook, Second Edition offers an update on the single most comprehensive survey of the two intertwined fields of spintronics and magnetism, covering the diverse array of materials and structures, including silicon, organic semiconductors, carbon nanotubes, graphene, and engineered nanostructures. It focuses on seminal pioneering work, together with the latest

GET BOOK!
Handbook of Spin Transport and Magnetism

In the past several decades, the research on spin transport and magnetism has led to remarkable scientific and technological breakthroughs, including Albert Fert and Peter Grunberg's Nobel Prize-winning discovery of giant magnetoresistance (GMR) in magnetic metallic multilayers. Handbook of Spin Transport and Magnetism provides a comprehensive, bal

GET BOOK!
Graphene and Related Nanomaterials

Graphene and Related Nanomaterials: Properties and Applications outlines the physics and the applications of graphene-related materials, including graphene, graphene oxide and carbon nanotubes. The first chapter introduces the physics of graphene and related nanomaterials. The following sections deal with different applications spanning from gas sensors to non-volatile memories and supercapacitors.

GET BOOK!
Nanoscale Spintronics and Applications

Spintronics Handbook, Second Edition offers an update on the single most comprehensive survey of the two intertwined fields of spintronics and magnetism, covering the diverse array of materials and structures, including silicon, organic semiconductors, carbon nanotubes, graphene, and engineered nanostructures. It focuses on seminal pioneering work, together with the latest

GET BOOK!
Nanomagnetism and Spintronics

Nanomagnetism and spintronics are two close subfields of nanoscience, explaining the effect of substantial magnetic properties of matter when the materials fabrication is realized at a comparable length size. Nanomagnetism deals with the magnetic phenomena specific to the structures having dimensions in the submicron range. The fact that the electronic

GET BOOK!
Carbon Nanomaterials for Biological and Medical Applications

Nanomaterials for Biological and Medical Applications explores the different applications of carbon nanomaterials in drug and gene therapies and their use in tissue regeneration, biosensor diagnosis, enantiomer separation of chiral drugs, extraction and analysis of drugs and pollutants, and as antitoxents. The book describes the synthesis processing of carbon nanomaterials,

GET BOOK!
Handbook of Nanophysics

Covering the key theories, tools, and techniques of this dynamic field, Handbook of Nanophysics: Principles and Methods elucidates the general theoretical principles and measurements of nanoscale systems. Each peer-reviewed chapter contains a broad-based introduction and enhances understanding of the state-of-the-art scientific content through fundamental equations and illustrations, some in color.

GET BOOK!
Spintronics Handbook  Second Edition

The second edition offers an update on the single most comprehensive survey of the two intertwined fields of spintronics and magnetism, covering the diverse array of materials and structures, including silicon, organic semiconductors, carbon nanotubes, graphene, and engineered nanostructures. It focuses on seminal pioneering work, together with the latest in

GET BOOK!
Practical Aspects of Computational Chemistry III

Theoretical and Computational Chemistry research has made unparalleled advancements in understanding every expanding area of science and technology. This volume presents the state-of-the-art research and progress made by eminent researchers in the area of theoretical computational chemistry and physics. The title mirrors the name of the annual international conference “Conference

GET BOOK!
Spintronics Handbook  Second Edition  Spin Transport and Magnetism

Spintronics Handbook, Second Edition offers an update on the single most comprehensive survey of the two intertwined fields of spintronics and magnetism, covering the diverse array of materials and structures, including silicon, organic semiconductors, carbon nanotubes, graphene, and engineered nanostructures. It focuses on seminal pioneering work, together with the latest

GET BOOK!