hierarchical modeling and inference in ecology

Download or Read online Hierarchical Modeling And Inference In Ecology full HQ books. Available in PDF, ePub and Kindle. We cannot guarantee that Hierarchical Modeling And Inference In Ecology book is available. Click Get Book button to download or read books, you can choose FREE Trial service. Join over 650.000 happy Readers and READ as many books as you like (Personal use).

Hierarchical Modeling and Inference in Ecology
Author :
Publisher : Elsevier
Release Date :
ISBN 10 : 0080559255
Pages : 464 pages
Rating : /5 ( users)
GET BOOK!

A guide to data collection, modeling and inference strategies for biological survey data using Bayesian and classical statistical methods. This book describes a general and flexible framework for modeling and inference in ecological systems based on hierarchical models, with a strict focus on the use of probability models and parametric inference. Hierarchical models represent a paradigm shift in the application of statistics to ecological inference problems because they combine explicit models of ecological system structure or dynamics with models of how ecological systems are observed. The principles of hierarchical modeling are developed and applied to problems in population, metapopulation, community, and metacommunity systems. The book provides the first synthetic treatment of many recent methodological advances in ecological modeling and unifies disparate methods and procedures. The authors apply principles of hierarchical modeling to ecological problems, including * occurrence or occupancy models for estimating species distribution * abundance models based on many sampling protocols, including distance sampling * capture-recapture models with individual effects * spatial capture-recapture models based on camera trapping and related methods * population and metapopulation dynamic models * models of biodiversity, community structure and dynamics * Wide variety of examples involving many taxa (birds, amphibians, mammals, insects, plants) * Development of classical, likelihood-based procedures for inference, as well as Bayesian methods of analysis * Detailed explanations describing the implementation of hierarchical models using freely available software such as R and WinBUGS * Computing support in technical appendices in an online companion web site

Hierarchical Modeling and Inference in Ecology

A guide to data collection, modeling and inference strategies for biological survey data using Bayesian and classical statistical methods. This book describes a general and flexible framework for modeling and inference in ecological systems based on hierarchical models, with a strict focus on the use of probability models and parametric

GET BOOK!
Hierarchical Modeling and Inference in Ecology

A guide to data collection, modeling and inference strategies for biological survey data using Bayesian and classical statistical methods. This book describes a general and flexible framework for modeling and inference in ecological systems based on hierarchical models, with a strict focus on the use of probability models and parametric

GET BOOK!
Applied Hierarchical Modeling in Ecology  Analysis of Distribution  Abundance and Species Richness in R and BUGS

Applied Hierarchical Modeling in Ecology: Analysis of Distribution, Abundance and Species Richness in R and BUGS, Volume Two: Dynamic and Advanced Models provides a synthesis of the state-of-the-art in hierarchical models for plant and animal distribution, also focusing on the complex and more advanced models currently available. The book explains

GET BOOK!
Introduction to Hierarchical Bayesian Modeling for Ecological Data

Making statistical modeling and inference more accessible to ecologists and related scientists, Introduction to Hierarchical Bayesian Modeling for Ecological Data gives readers a flexible and effective framework to learn about complex ecological processes from various sources of data. It also helps readers get started on building their own statistical models.

GET BOOK!
Models of the Ecological Hierarchy

In the application of statistics to ecological inference problems, hierarchical models combine explicit models of ecological system structure or dynamics with models of how ecological systems are observed. The principles of hierarchical modeling are applied in this book to a wide range of problems ranging from the molecular level, through

GET BOOK!
Bayesian Models

Bayesian modeling has become an indispensable tool for ecological research because it is uniquely suited to deal with complexity in a statistically coherent way. This textbook provides a comprehensive and accessible introduction to the latest Bayesian methods—in language ecologists can understand. Unlike other books on the subject, this one

GET BOOK!
Hierarchical Modeling and Analysis for Spatial Data

Among the many uses of hierarchical modeling, their application to the statistical analysis of spatial and spatio-temporal data from areas such as epidemiology And environmental science has proven particularly fruitful. Yet to date, the few books that address the subject have been either too narrowly focused on specific aspects of

GET BOOK!
Bayesian Data Analysis in Ecology Using Linear Models with R  BUGS  and Stan

Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and STAN examines the Bayesian and frequentist methods of conducting data analyses. The book provides the theoretical background in an easy-to-understand approach, encouraging readers to examine the processes that generated their data. Including discussions of model selection, model checking,

GET BOOK!
Bayesian Inference

This text is written to provide a mathematically sound but accessible and engaging introduction to Bayesian inference specifically for environmental scientists, ecologists and wildlife biologists. It emphasizes the power and usefulness of Bayesian methods in an ecological context. The advent of fast personal computers and easily available software has simplified

GET BOOK!
Spatial Capture Recapture

Spatial Capture-Recapture provides a comprehensive how-to manual with detailed examples of spatial capture-recapture models based on current technology and knowledge. Spatial Capture-Recapture provides you with an extensive step-by-step analysis of many data sets using different software implementations. The authors' approach is practical – it embraces Bayesian and classical inference strategies to

GET BOOK!
Occupancy Estimation and Modeling

Occupancy in ecological investigations; Fundamental principles of statistical inference; Single-species, single-season occupancy models; Single-species, single-season models with heterogeneous detection probabilities; Design of single-season occupancy studies; Single-species, multiple-season occupancy models; Occupancy data for multiple species: species interactions; Occupancy in community-level studies; Future directions.

GET BOOK!
Introduction to WinBUGS for Ecologists

Introduction to WinBUGS for Ecologists introduces applied Bayesian modeling to ecologists using the highly acclaimed, free WinBUGS software. It offers an understanding of statistical models as abstract representations of the various processes that give rise to a data set. Such an understanding is basic to the development of inference models

GET BOOK!
Data Analysis Using Regression and Multilevel Hierarchical Models

This book, first published in 2007, is for the applied researcher performing data analysis using linear and nonlinear regression and multilevel models.

GET BOOK!
Bayesian Analysis for Population Ecology

Novel Statistical Tools for Conserving and Managing PopulationsBy gathering information on key demographic parameters, scientists can often predict how populations will develop in the future and relate these parameters to external influences, such as global warming. Because of their ability to easily incorporate random effects, fit state-space mode

GET BOOK!