deep learning through sparse and low rank modeling

Download or Read online Deep Learning Through Sparse And Low Rank Modeling full HQ books. Available in PDF, ePub and Kindle. We cannot guarantee that Deep Learning Through Sparse And Low Rank Modeling book is available. Click Get Book button to download or read books, you can choose FREE Trial service. Join over 650.000 happy Readers and READ as many books as you like (Personal use).

Deep Learning through Sparse and Low Rank Modeling
Author :
Publisher : Academic Press
Release Date :
ISBN 10 : 0128136596
Pages : 300 pages
Rating : /5 ( users)
GET BOOK!

Deep Learning through Sparse Representation and Low-Rank Modeling bridges classical sparse and low rank models-those that emphasize problem-specific Interpretability-with recent deep network models that have enabled a larger learning capacity and better utilization of Big Data. It shows how the toolkit of deep learning is closely tied with the sparse/low rank methods and algorithms, providing a rich variety of theoretical and analytic tools to guide the design and interpretation of deep learning models. The development of the theory and models is supported by a wide variety of applications in computer vision, machine learning, signal processing, and data mining. This book will be highly useful for researchers, graduate students and practitioners working in the fields of computer vision, machine learning, signal processing, optimization and statistics. Combines classical sparse and low-rank models and algorithms with the latest advances in deep learning networks Shows how the structure and algorithms of sparse and low-rank methods improves the performance and interpretability of Deep Learning models Provides tactics on how to build and apply customized deep learning models for various applications

Deep Learning through Sparse and Low Rank Modeling

Deep Learning through Sparse Representation and Low-Rank Modeling bridges classical sparse and low rank models-those that emphasize problem-specific Interpretability-with recent deep network models that have enabled a larger learning capacity and better utilization of Big Data. It shows how the toolkit of deep learning is closely tied with the sparse/

GET BOOK!
Deep Learning through Sparse and Low Rank Modeling

Deep Learning through Sparse Representation and Low-Rank Modeling bridges classical sparse and low rank models—those that emphasize problem-specific Interpretability—with recent deep network models that have enabled a larger learning capacity and better utilization of Big Data. It shows how the toolkit of deep learning is closely tied with

GET BOOK!
Inpainting and Denoising Challenges

The problem of dealing with missing or incomplete data in machine learning and computer vision arises in many applications. Recent strategies make use of generative models to impute missing or corrupted data. Advances in computer vision using deep generative models have found applications in image/video processing, such as denoising,

GET BOOK!
Vision Models for High Dynamic Range and Wide Colour Gamut Imaging

To enhance the overall viewing experience (for cinema, TV, games, AR/VR) the media industry is continuously striving to improve image quality. Currently the emphasis is on High Dynamic Range (HDR) and Wide Colour Gamut (WCG) technologies, which yield images with greater contrast and more vivid colours. The uptake of

GET BOOK!
Spectral Geometry of Shapes

Spectral Geometry of Shapes presents unique shape analysis approaches based on shape spectrum in differential geometry. It provides insights on how to develop geometry-based methods for 3D shape analysis. The book is an ideal learning resource for graduate students and researchers in computer science, computer engineering and applied mathematics who

GET BOOK!
Generalized Low Rank Models

Principal components analysis (PCA) is a well-known technique for approximating a tabular data set by a low rank matrix. Here, we extend the idea of PCA to handle arbitrary data sets consisting of numerical, Boolean, categorical, ordinal, and other data types. This framework encompasses many well-known techniques in data analysis,

GET BOOK!
Computer Vision     ECCV 2012

The seven-volume set comprising LNCS volumes 7572-7578 constitutes the refereed proceedings of the 12th European Conference on Computer Vision, ECCV 2012, held in Florence, Italy, in October 2012. The 408 revised papers presented were carefully reviewed and selected from 1437 submissions. The papers are organized in topical sections on geometry, 2D and 3D shapes, 3

GET BOOK!
Handbook of Robust Low Rank and Sparse Matrix Decomposition

Handbook of Robust Low-Rank and Sparse Matrix Decomposition: Applications in Image and Video Processing shows you how robust subspace learning and tracking by decomposition into low-rank and sparse matrices provide a suitable framework for computer vision applications. Incorporating both existing and new ideas, the book conveniently gives you one-stop access

GET BOOK!
Sparse and Low rank Modeling for Automatic Speech Recognition

Mots-clés de l'auteur: automatic speech recognition ; deep neural network ; sparsity ; dictionary learning ; low-rank ; principal component analysis ; far-field speech ; information theory.

GET BOOK!
Broad Learning Through Fusions

This book offers a clear and comprehensive introduction to broad learning, one of the novel learning problems studied in data mining and machine learning. Broad learning aims at fusing multiple large-scale information sources of diverse varieties together, and carrying out synergistic data mining tasks across these fused sources in one

GET BOOK!
Advances in Electric Power and Energy

A guide to the role of static state estimation in the mitigation of potential system failures With contributions from a noted panel of experts on the topic, Advances in Electric Power and Energy: Static State Estimation addresses the wide-range of issues concerning static state estimation as a main energy control

GET BOOK!
Low Rank Models in Visual Analysis

Low-Rank Models in Visual Analysis: Theories, Algorithms, and Applications presents the state-of-the-art on low-rank models and their application to visual analysis. It provides insight into the ideas behind the models and their algorithms, giving details of their formulation and deduction. The main applications included are video denoising, background modeling, image

GET BOOK!
Low Rank and Sparse Modeling for Visual Analysis

This book provides a view of low-rank and sparse computing, especially approximation, recovery, representation, scaling, coding, embedding and learning among unconstrained visual data. The book includes chapters covering multiple emerging topics in this new field. It links multiple popular research fields in Human-Centered Computing, Social Media, Image Classification, Pattern Recognition,

GET BOOK!
Machine Learning  Low Rank Approximations and Reduced Order Modeling in Computational Mechanics

The use of machine learning in mechanics is booming. Algorithms inspired by developments in the field of artificial intelligence today cover increasingly varied fields of application. This book illustrates recent results on coupling machine learning with computational mechanics, particularly for the construction of surrogate models or reduced order models. The

GET BOOK!
Machine Learning

This tutorial text gives a unifying perspective on machine learning by covering both probabilistic and deterministic approaches -which are based on optimization techniques – together with the Bayesian inference approach, whose essence lies in the use of a hierarchy of probabilistic models. The book presents the major machine learning methods as

GET BOOK!